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This paper aims to provide guidance to ecologists with limited experience in spatial
analysis to help in their choice of techniques. It uses examples to compare methods
of spatial analysis for ecological field data. A taxonomy of different data types is
presented, including point- and area-referenced data, with and without attributes.
Spatially and non-spatially explicit data are distinguished. The effects of sampling
and other transformations that convert one data type to another are discussed; the
possible loss of spatial information is considered.
Techniques for analyzing spatial pattern, developed in plant ecology, animal ecology,
landscape ecology, geostatistics and applied statistics are reviewed briefly and their
overlap in methodology and philosophy noted. The techniques are categorized
according to their output and the inferences that may be drawn from them, in a
discursive style without formulae. Methods are compared for four case studies with
field data covering a range of types. These are: 1) percentage cover of three shrubs
along a line transect; 2) locations and volume of a desert plant in a 1 ha area; 3) a
remotely-sensed spectral index and elevation from 105 km2 of a mountainous region;
and 4) land cover from three rangeland types within 800 km2 of a coastal region.
Initial approaches utilize mapping, frequency distributions and variance-mean in-
dices. Analysis techniques we compare include: local quadrat variance, block quadrat
variance, correlograms, variograms, angular correlation, directional variograms,
wavelets, SADIE, nearest neighbour methods, Ripley’s L� (t), and various landscape
ecology metrics.
Our advice to ecologists is to use simple visualization techniques for initial analysis,
and subsequently to select methods that are appropriate for the data type and that
answer their specific questions of interest. It is usually prudent to employ several
different techniques.
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Current consensus within ecology that ‘‘space is the
final frontier’’ (Liebhold et al. 1993) is expressed by
intense interest in issues of spatial scale (Wiens 1989,
Dungan et al. 2002), metapopulation dynamics (Hanski

and Gilpin 1997), spatio-temporal dynamics (Hassell et
al. 1991), spatially-explicit modelling (Silvertown et al.
1992) and spatial synchrony (Bjørnstad et al. 1999).
Temporal ecological processes have been well studied
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since the work of Lotka and Volterra (May 1976)
was applied to insect population dynamics some sixty
years ago. By contrast, progress in spatial analysis
was somewhat hampered by the lack of computing
resources required, and intensive work began perhaps
two or three decades later.

When ecologists seek spatial pattern, evidence of
spatial non-randomness, they find it is the rule rather
than the exception. The natural world is indeed a
patchy place (Dale 1999), as we might expect, because
randomness implies the absence of behaviour, and so
is unlikely a priori on evolutionary grounds (Taylor
et al. 1978). Ecologists study spatial pattern to infer
the existence of underlying processes, such as move-
ment or responses to environmental heterogeneity.
Spatial structure may indicate intraspecific and inter-
specific interactions such as competition, predation,
and reproduction. Observed heterogeneity may also
be driven by resource availability. Care is required in
inferring causation, since many different processes
may generate the same spatial pattern. Spatial pattern
has implications for both the theoretical issues out-
lined above and applied problems such as the man-
agement of threatened species. Knowledge of spatial
structure can assist in the adjustment of statistical
tests and the improvement of sampling design (Legen-
dre et al. 2002).

Although spatial analysis reveals spatial pattern, it
is usually an empirical approach based on observa-
tional data, and is rarely model-based. As such, it is
the forerunner and facilitator of the formation of spe-
cific testable hypotheses that may later be tackled ex-
perimentally, in manipulative studies. Only then can
this process generate new ecological theory. The level
at which data are analyzed depends critically on the
amount of detail in the information already gathered,
concerning the biology and ecology of the species
studied. Models can only be formed when there is
considerable detailed information about life-stages,
their dynamics, demography, movement, behaviour,
etc. The approach outlined here is more generic and
less specific; it is targeted at situations when data are
collected from initial studies, relatively early in a pro-
ject. When more is known, models of spatial pattern
(Keitt et al. 2002) may be used to support inference
or for estimation and prediction in unsampled loca-
tions.

Methods for analyzing spatial pattern have been
developed in a wide variety of disciplines. Seminal
papers include Bliss (1941) in animal ecology, Watt
(1947) in plant communities, Skellam (1952) in statis-
tics, Matern (1986) in forestry and Rossi et al. (1992)
in geostatistics. This wide variety has led to some
overlap of methodology and philosophy (Getis 1991,
Dale et al. 2002). As ecologists approach a spatial
problem for the first time, they are often over-
whelmed by the multiplicity of available techniques,
uncertain about which set of methods to use, per-

plexed by the consequences of their choice of meth-
ods, and mystified as to the interpretation of
seemingly conflicting results.

The purpose of this paper is to provide a frame-
work for taking such decisions concerning analytical
approaches and interpretations. This we do by com-
paring and contrasting many commonly-used tech-
niques, using four case-studies with field data. We
start by describing the types of spatial data that may
be encountered. We then briefly describe a variety of
techniques that can be used to analyze data of each
form, and attempt a simple characterization in terms
of their output. All of the methods we will illustrate
have been described elsewhere in detail. We next use
the four real data sets to illustrate the results that are
obtained from each analysis, focusing on how the
methods differ with regard to appropriateness for
data type and information provided. There have been
few previous studies that have compared and con-
trasted different techniques, other than the paper of
Legendre and Fortin (1989), text books, and informal
surveys such as that reported at: �http://
www.stat.wisc.edu/statistics/survey/survey.html�. This
paper differs from those due to the greater scope of
both the types of data and statistical procedures illus-
trated.

Types of spatial data

We summarize spatial data types according to the
standard geographic system that defines points, lines,
areas and volumes (Burrough and McDonnell 1998),
but we restrict discussion to the more ubiquitous
point- and area-referenced data. There is a natural
hierarchy of information contained within data types;
some may be derived from others higher in this hier-
archy, through transformation or sampling.

Dimensionality of study arena

Ecological data are often collected along a one-di-
mensional linear transect (Fig. 1a, below), defined by
the set of coordinates {L} that comprise it (bold type
denotes a set of values represented by a vector). The
arena more usually studied is two-dimensional, often
rectangular, although irregular shapes (e.g. Fig. 1a,
top) are common. Definition of the boundary of a
two-dimensional arena requires considerably more
complexity than for a transect; the descriptor set {A}
must comprise at least three pairs of (x, y) coordi-
nates. Rarely, the area studied may explicitly exclude
some regions within its boundary (e.g. Korie et al.
2000), perhaps because some habitat within the area
cannot be utilized by the species studied.

ECOGRAPHY 25:5 (2002) 579



Subdivision of the study arena

The study arena may be subdivided spatially with no
intrinsic loss of information into contiguous regions
(e.g. Fig. 1b) such as physiographic provinces (Bailey
and Ropes 1998), or defined by some qualitative factor,
such as habitat type, or quantitative variable, such as
tree density in four classes.

If it is not possible to record data as a complete
census of the study arena, then samples may be taken
over smaller proportions of it. For example, an area
may be sampled by several quadrats. When subareas
are defined, then the quadrats are usually placed so as
to represent them. Alternatively, the quadrats may be
placed at random, or in some pre-determined arrange-
ment, often to form a rectangular grid (Fig. 1c). Occa-
sionally, samples are taken at points. Sampling results
in a loss of information compared to a complete census,
and caution should be taken to ensure that the effects
of this are minimized (see Dungan et al. 2002). Statisti-
cal methods must be used to relate the sample to the
larger population and to make inferences.

A sampling plan may be characterized by a combina-
tion of variables termed the extent, sample unit size
(known in geostatistics as the ‘‘support’’) and lag. The
extent describes the dimensions of the study arena, and
its area, A. The sample unit size is the area of the
quadrat (dw in the example in Fig. 1c). The lag refers to

the distance between each quadrat in a grid (ld and lw,
in the x and y directions, respectively, in Fig. 1c). For
contiguous subareas with no sampling, the lag is zero.
Changes to extent, support and lag may influence the
inferences drawn from analysis (Dungan et al. 2002).

Data types

We distinguish three prevalent spatial data types,
defined by the topology of the entity to which the
recorded information refers. These are 1) point-refer-
enced (Fig. 1d), 2) area-referenced (Fig. 2), and 3)
non-spatially referenced (attribute-only).

Point-referenced data are common in plant ecology;
forms derived from it are widespread in terrestrial
ecology. The simplest point-referenced data are a com-
plete census of the individuals recorded along a transect
(Fig. 1d, below). Each individual is considered identical
to all others and the only information recorded is its
location. This type is denoted as (x). An example would
be the locations of a particular weed species along a
field margin. For a two-dimensional arena, the point-
referenced data denoted as (x, y) describes the cen-
sussed locations of all individuals within it, with
reference to two coordinate dimensions (e.g. Fig. 1d,
top).

Fig. 1. (a, below) Example of
one-dimensional transect with
location described by the set
L, comprising two
x-coordinates; (a, top)
example of two-dimensional
study arena, with location
described by the set of (x, y)
boundary coordinates A, and
with area denoted by A. (b)
The entire study arena is
divided into six contiguous
subareas of unequal size and
shape. (c) Six parts of the
study arena are sampled with
a rectangular grid of
non-contiguous quadrats,
each one representative of
that subarea, shown in (b), in
which it is located. Each
quadrat is itself rectangular,
with dimensions d and w, and
separated from its neighbour
by distances ld and lw, in the
x and y directions,
respectively. (d) Example of
point-referenced data in the
form of censussed, mapped
individuals in the study arena
(top) and transect (below) of
(a).
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Fig. 2. Example of area-referenced geographic data, used typ-
ically in landscape ecology. The study arena of Fig. 1a has
been partitioned into areas, each with one of three attributes,
denoted by the shading. Areas may be polygonal or irregularly
shaped with curved boundaries. Also represented are a linear
feature, denoted RS, and a point, denoted T.

let, Thiessen or Voronoi (see Dale 1999: Fig. 1.4 for an
example). A closely related technique is the Delaunay
triangulation. These techniques leave the (x, y) coordi-
nates of the data unchanged. They effectively create
additional, derived, area-referenced data, similar to that
described in section 2) below.

Point-referenced (x, y) data may be amalgamated
into a single value, to represent a subarea. This results
in partial loss of spatial information, since the original
locations can no longer be recovered. The resulting
derived data are still explicitly spatial and retain the
form (x�, y�), but x� and y� must now be defined, for
example as the centroids of the subareas, used to trans-
form the (x, y) data of Fig. 1d to the (x�, y�, z�) data
type in Fig. 3c. In this example, a value of z� for each
subarea has been derived from the count of the number
of individuals within it. Comparing the two figures
shows that almost all the information concerning clus-
tering has been removed from the derived data. For
transformations of (x, y, z) data, amalgamation of the
z variable may also be achieved in very many ways,
such as the mean magnitude of the z attribute, where
the averaging is over the individuals located within each
subarea.

Sampled data from quadrats is always derived, by
definition, since all the data recorded from within the
quadrat are somehow aggregated, to yield a single
representative value. Usually, the derived (x�, y�) com-
ponent representing the location of each quadrat is
defined as its centroid, as in Fig. 3d, where the z’ value
for each of the quadrats in Fig. 1c has been derived
from the count of the number of individuals contained
within it. Observe how much variability is induced into

For any spatial data type, further information may
be available for each individual, through the recording
of an extra attribute(s), z; such data are denoted (x, z)
or (x, y, z). Attributes may have different forms, of
which the simplest is a categorical quantal variable
(male or female, dead or alive, Fig. 3a). Another form
of z attribute might be an ordered categorical qualita-
tive variable, such as a life-stage. Alternatively, it could
be a quantitative variable, such as the magnitude of an
innoculum (Fig. 3b).

Many forms of data may be derived. One transfor-
mation frequently applied to two-dimensional point-ref-
erenced ecological data divides up the study arena
according to the locations of individuals, into a mean-
ingful tessellation of polygons, often named for Dirich-

Fig. 3. Further examples of
forms of point-referenced
data. The censussed mapped
individuals of Fig. 1d, (a)
with additional quantal
attribute; (b) with additional
continuous attribute with
magnitude indicated by size
of symbol; (c) as counts
within each of the six
contiguous dashed subareas
of Fig. 1b; (d) as counts
sampled by the six dashed
non-contiguous quadrats of
Fig. 1c.

ECOGRAPHY 25:5 (2002) 581



the counts of Fig. 3d by the sampling process, com-
pared with the censussed values shown in Fig. 3c;
whatever loss of information is involved in derived
censussed data, the loss from sampled data will be
greater. Also, note the difference between recording a z
attribute(s) on exhaustively censussed point-referenced
individuals, and taking a point sample of an attribute
that is a continuously distributed variable over the
study arena, such as elevation. Both may involve irreg-
ularly-spaced data of the form (x, y, z), but the latter
has the properties of a sample, with the concomitant
features of uncertainty and the intention to represent
some larger unknown population.

Area-referenced data are common in landscape ecol-
ogy and geography. All of the variations of point-refer-
enced data discussed above apply equally to the
area-referenced data exemplified in Fig. 2. This type is
commonly represented either by a vector form, (A, z),
where location coordinates defining each (possibly ir-
regular) area are associated with attribute(s), or by a
raster form, where locations are addressed by a grid of
Cartesian coordinates and attributes pertain to a cell of
fixed area at that location. Note that raster data can be
stored as point-referenced data (x, y, z) but must
include the crucial information of grid cell size; this
representation is substantially equivalent to point-refer-
enced data in subareas, where the loss of information is
small and offset by a very large number of subareas.

In geography, a dichotomy is recognized between
so-called ‘‘object’’ and ‘‘field’’ data models (Peuquet
1984, Gustafson 1998, Peuquet et al. 1999). The object
model considers two-dimensional arenas populated by
discrete entities whereas underlying the field model are
variables assumed to vary continuously on a surface.
Area-referenced data can be considered as either; within
Geographic Information Systems software (Burrough
and McDonnell 1998) (A, z) data are often represented
as polygonal.

Sometimes, explicit spatial information might not
exist, or if the data for analysis is recycled from previ-
ous results, the information may have been degraded
and lack the detail of the original records. Some meth-
ods of data recording or amalgamation remove all
explicit spatial information. For example, a common
and powerful entity in spatial pattern analysis is termed
a nearest neighbour (NN) distance (Donnelly 1978,
Diggle 1983, Ripley 1988), defined for each censussed
individual as the distance to its nearest neighbour.
Hence, in the (x, y) data shown in Fig. 1d above, the
individual labelled P has the individual labelled Q as its
nearest neighbour and the distance PQ would be the
NN distance associated with P. As can be seen, the
relationship is not necessarily commutative, since the
nearest neighbour of Q is not P. The set of NN
distances for all individuals is not spatially-referenced,
so is denoted by (z). However, it contains much implicit
information concerning location, and may be used to

test for spatial randomness. A further example is the
frequency distribution of counts in subareas or samples
(e.g. the set z={3, 4, 6, 7, 7, 9} from Fig. 3c), stripped
of its (x, y) coordinate information. From these six
counts may be derived associated statistics such as the
sample mean, sample variance, and quantities such as
the variance to mean ratio, known as the index of
dispersion (Fisher et al. 1922), I, which in this case is
exactly 4. Note how I fails to capture any of the pattern
in the original Fig. 1d.

Data taxonomy

Other proposals for data taxonomy have been made;
some are not helpful because they are specific to disci-
plines tangential to mainstream ecology (e.g. Gustafson
1998). Cressie’s (1991) taxonomy is not recommended
because it makes insufficient distinction between the
information available and the collection methods used
to record it, particularly to reflect the effect of sam-
pling. Also, it formally defines lattice data as encom-
passing a finite, countable set of spatial locations, while
confusingly exemplifying it by reference to remote sens-
ing and medical image data that are both spatially
continuous in nature. Additionally, it would benefit
from a revision to link the term ‘‘geostatistical’’ with
models or methods for spatial analysis, rather than with
types of data.

Techniques for spatial analysis

Characteristics of spatial pattern

Many terms are used in ecology to describe various
aspects of generic non-randomness in spatial data. The
terms ‘‘aggregated’’, ‘‘patchy’’, ‘‘contagious’’, ‘‘clus-
tered’’ and ‘‘clumped’’ all refer to positive, or ‘‘attrac-
tive’’, associations between individuals in point-
referenced data, such as those in Fig. 4a. The terms
‘‘autocorrelated’’, ‘‘structured’’ and ‘‘spatial depen-
dence’’ indicate the tendency of nearby samples to have
attribute values more similar than those farther apart.
Conversely, the terms ‘‘negatively autocorrelated’’, ‘‘in-
hibited’’, ‘‘uniform’’, ‘‘regular’’ and ‘‘even’’ refer to
negative or repulsive interactions between individuals,
such as those in Fig. 4b. The term ‘‘overdispersion’’ has
been used very confusingly in the past, to indicate
excess variability or heterogeneity by statisticians and
regularity of distribution by ecologists; for this reason
we agree with Southwood’s (1966, p. 25) recommenda-
tion that this and its antonym ‘‘underdispersion’’ be
used sparingly, and then only with rigorous definitions.

The large number of methods derived for spatial
analysis reflect the multitude of non-random character-
istics that may be of interest to ecologists and the
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Fig. 4. Point locations of 32
individuals: (a) aggregated
into 8 clusters, each with a
random number of
individuals, and centred on
random locations; (b)
arranged regularly; (c) that
display spatial anisotropy; (d)
that display non-stationary
spatial structure, with half of
the individuals aggregated
into four clusters towards the
top and left of the study
arena and the other half, in
the bottom-right of the area,
arranged randomly. Note that
in d the intensity of the
process is roughly equal in
the two parts of the area. In
both a and b, one of the
points has been labelled A
and two circles, radii t1 and
t2, are shown centred on A.

corresponding multiplicity of mechanisms that generate
them. Most methods identify particular characteristics
of pattern, ranging from generic statistical measures,
such as coefficient of variation among samples, to more
specialized methods that address explicit ecological
questions, such as indices of landscape habitat patch
shape. Occasionally, methods such as geostatistics have
arisen in one discipline and proved so useful that they
have been embraced by mainstream ecology (Rossi et
al. 1992, Liebhold et al. 1993). We focus on twelve
methods, exemplified in analyses of the case studies.
Some methods, such as fractal analysis (Stoyan and
Stoyan 1994) or spectral methods (Mugglestone and
Renshaw 1996), are omitted due to constraints of space.
Detailed descriptions of methods may be found in cited
sources or in the companion paper of Dale et al. (2002).

Most methods seek to compare some feature of the
spatial process ‘‘here’’ (at some local reference point),
with the same feature ‘‘elsewhere’’, i.e. in another loca-
tion(s). The reference point could be a randomly chosen
location or individual. The feature described might be a
count of a defined set of other individuals; or an

attribute, for example the volume of some organism; or
a derived value, such as local density. The other loca-
tion(s) may be a particular distance away in some given
direction; or defined by a given interval centred on the
reference point; or the next contiguous area in a se-
quence; or the nth nearest individual. The definition
‘‘local’’ may shift, systematically or randomly, to en-
compass different parts of the study arena, in turn.

Methods vary in the degree of information they
impart. The simplest methods are descriptive displays
of spatial information, consistent with Chatfield’s
(1985) principles of initial data analysis. We stress the
utility of mapping and simple summary statistics as a
first step in the analysis of spatial data (Korie et al.
1998), and advocate the work of Tufte (1997) and Carr
(1999) as an innovative source of ideas for visual pre-
sentation. More sophisticated methods allow inference
in the form of a test of the null hypothesis, sometimes
more complex than that of complete spatial random-
ness. Yet further information is offered by methods
that estimate quantities. Finally, there are methods that
fit spatial models, if enough data are available (Keitt et
al. 2002).
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Many ecological data sets exhibit different spatial
pattern when viewed at one spatial extent than at
another, a ‘‘scale’’ effect. For example, the point loca-
tions in Fig. 4a are aggregated into clusters at small
spatial extents, although the clusters themselves have a
random number of individuals and random locations.
Certain methods are designed specifically to study the
relationship between the degree of pattern and its scale
(Table 1), and see Dungan et al. (2002).

Another common spatial characteristic of ecological
data is anisotropy, where the pattern itself changes with
direction. In Fig. 4c the clusters are elongate in a
specific direction and tend to be associated with each
other more strongly in that direction. Compare Fig. 4a,
where the pattern is random with respect to direction.

Whereas global methods summarize patterns over the
full extent of the area studied, in recent years there has
been interest to develop methods that identify local
variation (Anselin 1995, Getis and Ord 1995, Ord and
Getis 1995, Sokal et al. 1998a, b) in spatial characteris-
tics, such as aggregation, within the sampling domain
(Table 1). Local methods such as wavelets and SADIE
can be used to map and detect locations within the
study arena that may drive the overall pattern, or which
are outliers. When the underlying process that generates
pattern varies across different regions within the area
studied, a stationary model will not be appropriate. In
Fig. 4d, although the intensity of the point process is
roughly equal in the two parts of the area, individuals
are aggregated in one part and randomly distributed in
another. Many methods are based, to a small or large
degree, on stationarity assumptions.

Methods appropriate for different data types

Point-referenced data, (x, y)
Questions asked of such data normally concern the
spatial pattern of the individuals: are they clustered (as
in Figs 1d, top and 4a) or regularly spaced (as in Figs
1d, below and 4b), or do they occur at random loca-
tions? Ripley (1977, 1988) derived a method based on
the indices, K� (t) and L� (t), scaled for intensity, that
averages the number of individuals within a distance t
of a randomly chosen individual. For an individual in
an aggregated pattern, for example point A in Fig. 4a,
the expected number of individuals within a circle of
radius t1 that approximates to the dimensions of a
typical cluster will be relatively large compared to the
same number of individuals distributed randomly
within the study arena. As the radius of the circle is
gradually increased, say to t2, the area encompassed
extends outside the cluster to which A belongs, but not
yet into other clusters, so there are few extra individuals
counted. This characteristic increase in the count over
particular small intervals of t provides a signature to
graphs of L� (t) vs t, that may be formally tested by

comparison with corresponding graphs generated by
Monte Carlo simulation (Diggle 1983) for random pat-
terns. Note that for a regular pattern, as in Fig. 4b, the
reverse is the case: the count is fewer than expected for
t1 and greater for t2. Methods for this data type must
allow for edge effects (Ripley 1988, Haase 1995).

Point-referenced data with attributes, (x, y, z)
Typical questions for such data are: is the apparent
segregation in Fig. 3a of the solid from the open
symbols real, and vice versa? Is the infection measured
by the quantitative degree of innoculum shown in Fig.
3b dispersing from a point source, and if so, can we
confirm that the source is located close to the centre of
the study arena? With such a continuous attribute it is
often of interest to determine whether its values are
more similar than expected to those nearby, or more
formally whether there exists detectable spatial autocor-
relation, and if so, what is its relationship with the
distance between points? When there are several z
attributes, we are usually interested to know whether
the variables are positively spatially associated (Perry
1998b, Liebhold and Sharov 1998) with each other or
negatively spatially associated (termed ‘‘dissociated’’),
once any induced (dis)similarity due to their individual
spatial structure is allowed for (Clifford et al. 1989,
Bocard et al. 1992, Dutilleul 1993). Alternatively, do
they occur randomly with respect to one another?

Some methods that involve z-attributes are restricted
to regularly spaced (x) or (x, y) data on a grid (Table
1). For example, ‘‘quadrat variance methods’’ (Dale
1999) which include ‘‘two-term local quadrat variance’’
(TTLQV) as well as 3TLQV and others, are used
predominantly for one-dimensional regularly-spaced
transect data. Second-order comparisons are made be-
tween blocks of a given length, say d, of contiguous
quadrats, through computation of their variance. Ag-
glomeration into blocks using increasing values of d,
within a hierarchy, allows plots of variance against d.
Since the blocks are contiguous, block size is identical
to the distance between block centres. The idea is that
a peak in variance on this graph will indicate maximum
contrast between patch and gap, if there is a stationary
process with constant cluster size, at a distance equiva-
lent to approximate cluster size. This allows the detec-
tion, and in some cases the testing for significance of
spatial pattern along the transect. Their analogues in
two-dimensions include the block quadrat variance
methods for (x�, y�, z�) data where z� is a count, derived
for insects by Bliss (1941), rediscovered for plants by
Greig-Smith (1952) and later modifications such as
4TLQV (Dale 1999).

Very closely related to these is a large class of
methods that focus on the dependence of autocorrela-
tion on distance. Here, blocks of quadrats are replaced
by single units or individual locations. The average
variance between a pair of units is calculated for a
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Table 1. Description of methods for analysis of spatial data.

AllowsType of data Original use Info. available Info. availableModel 1- or 2- Irregularly-Method Info. available
dimensions?on anisotropy? spaced unitshypothesis on localbased? at multiple

pattern? allowed?scales?tests?

possible no both yesyesyesRipley’s K and L, etc. noplant ecologypoint-referenced
locations, (x, y)

Quadrat variance methods yes no no 1 nopoint-referenced plant ecology no rarely
locations, (x, z)(TTLQV, etc.)

no rarely yes possible no 2 noplant ecologypoint-referencedBlock quadrat variance
locations withmethods (Greig-Smith,
attributes, (x, y, z)4TLQV, etc.)
point-referenced no yes yes yes no both yesCorrelograms (Moran’s I, geography

Geary’s c, etc.) locations with
attributes, (x, y, z)

yes no both yesGeostatistics (variograms), (x, y, z) Earth sciences no no yes
PQV

no both yesyes yesGeostatistics (kriging) yesyesEarth sciences(x, y, z)
Angular correlation yes no 2 yes(x, y, z) geography no yes no

yes no yes both noWavelets (x, y, z) statistics no no
no no yes both yesSADIE (x, y, z) insect ecology no yes

rarely no rarely no 2rarely yeslandscape ecologyarea-referencedLandscape ecology metrics
locations with(edge density, shape

indices, etc.) attributes, (A, z)
no yes no no no bothapplied yesVariance-mean methods non-spatially

entomologyreferenced data,(Morisita, Taylor, etc.)
attributes only, (z)

yes no no no both yesplant ecology andNearest neighbour methods no(z)
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particular distance, d, and the relationship between
variance (or semi-variance) and d is graphed and stud-
ied, thereby quantifying structure at multiple spatial
extents. Some of these methods, Moran’s I (Moran
1950) and Geary’s c, allow significance tests of com-
plete spatial randomness (Cliff and Ord 1973, 1981,
Sokal and Oden 1978, Oden 1984). Geostatistical meth-
ods in this class include the variogram, correlogram,
and covariance function. We include paired quadrat
variance (PQV) in this section because, although strictly
a quadrat variance method, the size of its block never
varies; indeed, despite their independent development,
the variogram and PQV are mathematically identical
and thus provide the same information (ver Hoef et al.
1993, Dale and Mah 1998, Dale et al. 2002). Geostatis-
tical methods are not generally used for hypothesis
testing, but their associated models of spatial depen-
dence are used for spatial interpolation, modelling and
simulation (Isaaks and Srivastava 1989, Rossi et al.
1992). The idea underlying all the methods is that
spatial autocorrelation declines, and therefore variance
increases, with increasing d, until some maximum vari-
ance, termed the ‘‘sill’’, is reached, at a value of d
termed the ‘‘range’’. The range is an estimate of average
patch and gap size. For very small d the variance,
termed the ‘‘nugget’’, although a minimum, may still be
non-zero; it is equated to measurement error plus the
variance at smaller unit sizes. When z is a dummy (0, 1)
variable, measuring presence, some methods in this
section (such as indicator variograms) are effectively
utilizing (x, y) data.

Many methods have been adapted for the study of
anisotropy (Oden and Sokal 1986, Isaaks and Srivas-
tava 1989, Falsetti and Sokal 1993) and local informa-
tion (Anselin 1995, Getis and Ord 1995, Ord and Getis
1995, Sokal et al. 1998a, b). Specific methods (Table 1)
to detect anisotropy include Rosenberg (2000) and an
angular method using spatial correlation, derived by
Simon (1997). The latter projects each (x, y, z) point
onto an axis in a test direction, say �, then calculates
the correlation, r, between the positions of the projected
points along this �-axis and the z-attribute. The values
of (�, r) are then plotted in polar coordinates; a bulge in
the resulting curve indicates the direction of greatest
change in z.

Wavelet analysis may also be used to quantify spatial
pattern over a variety of spatial extents, usually for
one-dimensional data. It has much in common with the
methods described above, albeit based on a different
statistical approach (Bradshaw and Spies 1992, Dale
and Mah 1998). The emphasis is on the ‘‘decomposi-
tion’’ of the data into repeating patterns that are com-
pared with the wavelet function’s shape over varying
window-widths, which are equivalent to distance lags.
In this there are similarities to the quadrat variance
methods (Dale et al. 2002), but wavelets allow contrasts
of a specific and more complex functional form, using

shapes such as the ‘‘Mexican hat’’ (Dale 1999). A
powerful feature of this method is the lack of any
stationarity assumption.

SADIE is a class of methods designed to detect
spatial pattern in the form of clusters, either of patches
or gaps (Perry et al. 1999). The calculations (Dale et al.
2002) also involve comparisons of local density with
those elsewhere, but made across the whole study arena
simultaneously. Each sample unit is ascribed an index
of clustering, and the overall degree of clustering into
patches and gaps is assessed by a randomization test. A
specific extension to spatial association (Winder et al.
2001) is made by comparing the clustering indices of
two sets of data across the sample units. A local index
of association, �k, may be derived at each sample unit,
k, and these may be combined to give an overall value,
X. The power of these methods comes from the ability
to describe and map local variation of spatial pattern
and association.

Area-referenced data (A), (A, z)
Data that are area-referenced are common in landscape
ecology, particularly in polygonal form. The methodol-
ogy for their analysis has not advanced as fast as other
techniques described here. Only few involve inferential
tests; they are largely descriptive. As for point data, one
option is to sample by overlaying a grid and convert to
(x, y, z) spatially-referenced attribute data (see above
and Discussion). However, if the degree of fragmenta-
tion is of particular interest then methods such as those
described in Turner and Gardner (1991) and McGarigal
and Marks (1995) may be applied to polygonal data in
either raster or vector form. Patch size and its coeffi-
cient of variation (CV) are examples of the numerous
indices; there is no space here for an exhaustive list.
The latter is a measure of landscape fragmentation and
heterogeneity but with important limitations (McGari-
gal and Marks 1995). Edge density (Morgan and Gates
1982), defined as a measure of edge length standardized
by enclosed area, is positively related to the degree of
fragmentation of the habitat, but also to its shape. For
regular shapes it is minimum for a circle, and maximal
for a linear feature. Total edge length is the sum of all
lengths of edges of patches of one landscape type.
Mean shape index, the ratio of perimeter to area, is a
measure of shape complexity; it approaches unity for
perfect figures such as circles and increases with shape
irregularity (McGarigal and Marks 1995). When sam-
pling relatively small areas, the area-weighted shape
index is considered more meaningful, because it gives
greater weight to large polygons.

Attribute-only data (z)
NN methods (Ripley 1977, 1988, Diggle 1983) are used
to analyze the distance from each of the individuals in
a set of point-referenced data to its pth nearest neigh-

586 ECOGRAPHY 25:5 (2002)



bour, where p is usually unity. The set of distances is
not spatially explicit, even though it is derived from
point-referenced locations. Hypothesis tests (Clark and
Evans 1954) are usually based on the expected distribu-
tion of such distances for a random arrangement of
individuals. Highly clustered patterns tend to have rela-
tively small (e.g. Fig. 4a), and regular patterns (e.g. Fig.
4b) relatively large NN distances, respectively. They are
similar to methods like Ripley’s L� (t) function in that
they must be adjusted to allow for edge effects, but
differ from them in that they utilize less spatial infor-
mation and cannot identify pattern at multiple spatial
extents.

Early studies of spatial pattern such as Bliss (1941)
were based on summary statistics from frequency distri-
butions (David and Moore 1954), and used little or no
spatially-explicit data. Techniques relied on the fact
that samples of randomly arranged individuals would
yield counts that followed the Poisson distribution, but
an observed Poisson distribution does not necessarily
imply randomness (Hurlbert 1990). Indeed, the set of
counts: {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 5}, conforms closely
to a Poisson distribution, but if sampled in that order
along a line transect shows an obvious linear trend
departing strongly from randomness. Recent methods
(Upton and Fingleton 1985, Perry and Woiwod 1992)
include the index of dispersion I, Morista’s index,
Lloyd’s (1967) index of mean crowding and Taylor’s
power law (Taylor et al. 1978), used extensively in
animal ecology. Jumars et al. (1977) and Perry (1998a)
have cautioned users to distinguish non-randomness in
the form of statistical variance-heterogeneity from true
spatial non-randomness. The only valid spatial infer-
ence possible to make from an observation of variance-
heterogeneity is that there must be spatial pattern for
some unknown support smaller than that used to derive
the observed counts.

Origins of methods

While it can be shown that many of the methods
described above are computationally similar (Dale et al.
2002), it is worth noting that many differences among
the methods can be attributed to their historical devel-
opment in different disciplines (Table 1). In applied
entomology, limited computational resources before
1970 precluded the widespread development of methods
that utilized specific spatial coordinates, although the
SADIE method now exists to address this issue. Later,
methods developed for plant ecology were applied to
two-dimensional coordinate locations of individuals,
but often lacked a tractable underlying statistical
model. Geostatistical methods were developed for prob-
lems in the applied Earth sciences and emphasized
estimation rather than the detection of spatial pattern
by hypothesis testing. However, their development from

an underlying generic statistical model has made these
methods useful for purposes of spatial interpolation
and simulation, and they are applied increasingly to
ecological problems (Rossi et al. 1992, Liebhold et al.
1993).

Case studies

Four case studies are used to illustrate the application
of the methods outlined above to the data types dis-
cussed above. These exemplify comparisons between
methods, regarding their applicability to answer partic-
ular questions, their ability to provide different types of
information and to allow contrasting inferences.

Case study 1: counts of three shrub species along
a transect

The data (Dale and Zbigniewicz 1997) are censussed
percentage cover of each of six boreal shrub species, of
which only three are considered here. They are, in order
of abundance, Betula glandulosa, Salix glauca, and
Picea glauca, measured between 1 and 3 m height.
Cover was measured, along a linear transect of 1001
contiguous quadrats, each 0.1 m2, in shrub-dominated
vegetation. Separate measurements were done for each
species; the combined total for more than one species
may be �100%. All three species were most abundant
towards the left end of the transect and all were absent
in �60% of quadrats. Questions Dale and Zbigniewicz
posed included: is there pattern of plants within species?
What is the average patch- and gap-size? Is there spatial
association between species? The (x, y, z) data are
analyzed as collected: derived total cover per contigu-
ous quadrat.

Betula glandulosa
The observed, raw data exhibited numerous, relatively
small patches (Fig. 5). Initial inspection of presence-
absence revealed 80 runs of quadrats that contained
some Betula glandulosa, with mean length 0.48 m,
separated by 80 runs that contained none, with a much
greater mean length of 0.77 m. Indeed, for such sparse
data, with �60% zero cover, there must be large
differences between patch and gap size.

The analysis begins with various approaches to esti-
mate a dominant cluster size. Because of the large
number of quadrats, the variogram (Fig. 6) was smooth
and the lack of a nugget effect emphasized that most of
the fine spatial structure was captured. A spherical
model was appropriate and the range of ca 0.7 m
implied a relatively small dominant cluster size.

The PQV plot, identical to the variogram except that
it was plotted over a greater distance on the x-axis,
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Fig. 5. Percent cover of Betula glandulosa. One quadrat is
equivalent to 0.1 m.

The Mexican-Hat wavelet analysis (Fig. 7) showed by
the intense yellow shading at small window-widths and
by the marginal mean graph, that the greatest contrasts
within windows occur at relatively small window widths
of 10 quadrats, the estimated dominant cluster size. The
spike of largest variance, occurring around quadrat
277, successfully identified the longest run of substan-
tial cover, ten successive quadrats each of at least 90%.
Another region in which the wavelet analysis identified
large variance was the broad peak around quadrat 660;
there, B. glandulosa was present in 34 successive
quadrats, but with considerable variability in cover
from quadrat to quadrat.

Moran’s I was highly significant overall. At the
shortest distances, I declined with increasing lag, until
at a distance of 0.7 m spatial autocorrelation became
negative; this was interpreted as an estimate of the
dominant cluster size. At larger lag distances I had
relatively small values. The strongly negative autocorre-
lations at lags 7.5 and 80 m were difficult to relate to
the data and could not readily be interpreted.

The SADIE analysis showed very strong clustering.
The mean patch and gap clustering indices were 3.12
(p�0.0005) and −3.30 (p�0.0005), respectively. Just
over one-third of the total length of the transect had no
detectable pattern (white areas, Fig. 8); these areas were
spread fairly evenly. The size of the 73 patches ranged
from 0.1 to 1.7 m (mean 0.40 m, SEM 0.046 m, median
0.2 m), and of the 106 gaps from 0.1 to 3.3 m (mean
0.30 m, SEM 0.031 m, median 0.2 m). The SADIE
clusters relate to spatial pattern rather than abundance
per se, and so the large proportion of the transect
where there was no pattern broke up the runs of
less-abundant quadrats into the relatively large number
of gap clusters.

Of the methods studied, the variogram/PQV and
Moran’s I matched each other closely and gave sensible
estimates of dominant cluster size, averaged of necessity
over patches and gaps. The Mexican-Hat wavelet

Fig. 6. Variogram of Betula glandulosa data in Fig. 5. Semi-
variance, gamma, is plotted against distance in metres.

added no useful information for these data; there was
no evidence of damped periodicity beyond the esti-
mated range. The TTLQV and 3TLQV plots were
similar. The 3TLQV plot, using more data, had three
peaks: one from ca 1.7 to 2.5 m, another from 4 to 7 m,
and a third from 13 to 17 m. It was unclear to what
features of the data the larger peaks corresponded.

Fig. 7. Mexican-Hat wavelet
analysis of Betula glandulosa.
The variance surface is plotted
vs position along transect in
metres and scale of
window-width, in units of
quadrats (0.1 m); larger
variances are shown in yellow
and smaller variances shaded
red. Also shown are graphs of
the two marginal means over
the surface. In the lower
graph, variance is averaged
over all window widths for
each quadrat; to the side,
variance is averaged over the
entire transect for each
window-width scale.
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Fig. 8. SADIE analysis of
Betula glandulosa. Red shading
indicates patches with cluster
index values �1.5; blue
shading indicates gaps with
index values � −1.5; white
areas represent lengths that are
neither patches nor gaps.

provided a larger estimate, but gave very useful insights
into other aspects of the data. TTLQV and 3TLQV
performed poorly, and added no extra useful interpre-
tation. The SADIE method provided separate and dif-
ferent estimates of patch and gap size, which were
sensible.

Picea glauca

The observed Picea glauca data exhibited a small num-
ber of relatively small patches (Fig. 9a), having similar
structure to the Betula data above, but of a much
sparser nature. There were 20 small bursts of cover,
ranging from 0.1 to 1 m with mean length 0.24 m. Less
than 5% of quadrats were occupied and the runs con-
taining no Picea ranged up to 18.1 m with mean length
4.54 m.

The PQV (Fig. 10, top) implied an average cluster
size of 1.1 m, although for situations where the ob-
served patch and gap size are as disparate as here this
has little interpretive utility. Its interesting feature was a
sudden decline in variance at around 10.5 m, unusual
for a PQV/variogram, and caused by the sparseness of
the data. This distance was highlighted because it repre-
sented roughly the minimum between any of the four
patches containing at least one quadrat with �80%
cover shown in Fig. 9a. At shorter distances, variance
was dominated by the comparison between those pairs
of quadrats, one of which contained a member of one
of these four patches and the other of which did not.
The upward slope over long stretches of the plot indi-
cated the clear trend in the data. The TTLQV and
3TLQV plots showed no sudden decline in variance;

they indicated structure with an average cluster size ca
6 m and ca 3.8 m, respectively.

Marginal variance in the Mexican-Hat wavelet plot
mirrored the positions of the four largest patches re-
ferred to above, but showed little further structure;
marginal variance was maximal at 0.9 m.

Usually, Geary’s c and Moran’s I (Fig. 10, middle
and below) are very similar except for inversion, but for
these data they differed. Both indicated an dominant
average cluster size of 0.9 m, but whereas I remained
fairly flat thereafter, c continued to increase before
crossing the x-axis again around 10.5 m, informatively
indicating a second scale of pattern at the same distance
as found by PQV (Fig. 10, top).

The SADIE analysis confirmed substantial spatial
pattern, the mean clustering indices for patches being
3.25 (p�0.0013) and for gaps −3.88 (p�0.0013). A
proportion of 0.29 of the total length of the transect
had no detectable pattern, almost all within the left-
hand half of the transect. The 19 patches were correctly
identified, ranging in size from 0.1 to 0.5 m (mean 0.18
m, SEM 0.031 m, median 0.1 m), and the 43 gaps from
0.1 to 12.7 m (mean 1.6 m, SEM 0.36 m, median 0.8
m).

Salix glauca

Data for Salix glauca was similar in structure to both
other species. There was considerable spatial pattern,
with a degree of sparseness midway between the other
two species (Fig. 9b). No feature of any analyses was
fundamentally different from those discussed above, so
none is reported, but the data are presented to inform

Fig. 9. Percent cover of (a)
Picea glauca and (b) Salix
glauca. One quadrat is
equivalent to 0.1 m.
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Fig. 10. Methods that measure variability plotted against
varying extents in units of metres (ten quadrats) for Picea
glauca. Above is local paired quadrat variance, PQV; under-
neath are two correlograms, Moran’s I (middle graph) and
Geary’s c (lower graph). Filled symbols indicate significant
individual lags (p�0.05).

Cross-correlograms and cross-variograms also revealed
little structure.

However, SADIE analysis of the cluster indices re-
vealed strongly significant positive association between
the spatial pattern in pairs of all three species (Betula
glandulosa and Picea glauca, X=0.244, p�0.001; Be-
tula glandulosa and Salix glauca, X=0.133, p=0.001;
Picea glauca and Salix glauca, X=0.401, p�0.001).
The method of Clifford et al. (1989) suggested an
approximate halving of the effective degrees of freedom
for each species pair; probability levels and confidence
limits, from randomizations under the null hypothesis
of no association, were adjusted accordingly. In a map
of local association, �k, for Picea glauca and Salix
glauca (Fig. 11), the dominance of plum shading over
green demonstrates an overall positive association be-
tween the species. The positions of the shaded contours
distinguishes areas in which relatively large local values
occurred. For example, the plum shading between
quadrats 333 and 336 reflects values of positive local
association, arising from the coincidence of patches
exceeding 40% cover for both species. Detrending the
cluster indices by a quadratic function suggested that
the association found was due mainly to larger-scale
similarities between the species. All maps showed con-
siderable clustering of local association towards the
extreme right of the transect, where the coincidences of
several gaps reflected long runs of quadrats where cover
was exceedingly sparse or absent for all species.

The difference between the results for the simple
correlation analyses and SADIE arise, as for the single
species comparisons, because the former makes com-
parisons between variables that are abundance/density
estimates, where an isolated large value contributes
equally to the computed statistic as does a similar value
in a patch. By contrast, the SADIE analysis is based
upon the degree of spatial pattern, so isolated values
are deliberately downweighted.

the analysis of relationships between the species, dis-
cussed below.

Relationships between the species
Using the raw cover data, correlations between species
pairs were small (Betula glandulosa and Picea glauca,
r=0.0188; Betula glandulosa and Salix glauca, r=
−0.0577; Picea glauca and Salix glauca, r=0.0016).
None was significant, before or after accounting for
spatial structure using the Clifford et al. (1989) method.

Fig. 11. SADIE local
association (y-axis), �k,
between Picea glauca and
Salix glauca versus position of
kth quadrat (x-axis). Symbols
denote values of �k exceeding
upper or lower critical values
(25 expected); 35 filled plum
circles indicate significant
positive association, single
open green symbol indicates
negative dissociation. Variation
of local association along
transect is shown, for all
values of �k, by shaded bands
of colour in rectangle (plum
positive; green negative; darker
shades indicate greater
extremes of association).
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Fig. 12. (a) Locations of
the 4357 Ambrosia
dumosa individuals in the
100×100 m study arena.
(b) Frequency
distribution of the count
of individuals per 5×5
m subarea quadrat.

Case study 2: mapped locations and volume of a
desert shrub

The data (Miriti et al. 1998) are the locations and
logarithmically-transformed estimated plant canopy
volumes of all individual adults of the deciduous desert
shrub Ambrosia dumosa, recorded on a single occasion
in a 100×100 m area in the Colorado Desert (Wright
and Howe 1987). These data form a subset of a larger
and phased study of plant dynamics with different life
stages, in which Ambrosia dumosa encompassed almost
two-thirds of all recorded stems. The study site was
selected deliberately to minimize heterogeneity at-
tributable to environmental variation. Miriti et al.
(1998), and see references within) were interested in the
relative importance and effects of possible intra-specific
interference and negative plant-to-plant interactions on
spatial distribution, and to quantify the spatial scales

over which major processes operated. Here, four ver-
sions of the data were analyzed: (x, y) point locations,
derived (x, y, z) counts in 5×5 m contiguous subareas,
(z) attributes (nearest neighbour distances and vol-
umes), and derived (x, y, z) mean volume per plant in
5×5 m contiguous subareas.

Individuals of A. dumosa seemed to be distributed
throughout the study arena with considerable, but
small-scale aggregation (Fig. 12a). Two or three bands
of relatively low or zero density, of width ca 15 m,
appeared to run roughly north-west to south-east
across the area. The frequency distribution of counts
per 5×5 m quadrat shows a typically right-skewed
distribution with a mean of 10.86 plants per quadrat
and a similar mode (Fig. 12b); the variance/mean ratio
was 4.3, which indicates significant numerical variance
heterogeneity.

Fig. 13. Ripley’s L� (t) function
for Ambrosia dumosa
individuals, where t represents
the radius in metres of the
notional circle drawn around a
randomly chosen plant. Also
shown are upper, Ru(t) and
lower, Rl(t) envelopes
representing upper 97.5%-iles
and lower 2.5%-iles under the
null hypothesis of complete
spatial randomness, derived
from Monte Carlo
randomizations. Here, for
visual clarity, the three
y-variables are each
transformed by subtracting t,
prior to plotting: L� (t) – t are
filled circles, Ru(t) – t are
open triangles, Rl(t) – t are
open diamonds. The x-axis
represents t. Filled circles
above the upper envelope
indicate significant aggregation
and those below the lower
envelope indicate significant
regularity.
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Fig. 14. Semivariance from directional variograms for Am-
brosia dumosa counts, in 5×5 m quadrats, plotted against
distance in metres, in directions: 0°, 45°, 90° and 135°.

as data the counts of individuals within contiguous 2n

m2 square subareas, where n=2, 3, and upwards. This
gave an initial, rough indication of the relationship of
how aggregation varied with subarea size. It showed
moderate and non-significant heterogeneity, but which
crucially decreased monotonically with subarea from
the smallest, with side 2 m, and became virtually indis-
tinguishable from random at the largest tested, with
side 11.3 m. Hence, both these results confirmed the
conclusions of Miriti et al. (1998) and the visual impres-
sion from Fig. 12a. There was considerable aggregation
at the smallest spatial extents, consistent with some
unspecified plant-to-plant interactions, but this seemed
to decrease over medium extents of ca 100 m2 with sides
of 10 m, a distance beyond which an individual plant
would expect to exert an influence over others.

To quantify further the relationship between aggrega-
tion and spatial scale of distance, t, we plotted Ripley’s
L� (t) function versus t for the (x, y) point location data
(Fig. 13). This confirmed one indication from the
blocked quadrat variance analysis, that there was sig-
nificant and strong aggregation from the smallest scale
studied, a distance of 0.7 m, which declined almost
monotonically with t. However, this did not cross the
upper envelope until ca 24 m. Unusually, L� (t) contin-
ued to decline, indicating regularity by falling substan-
tially below the lower envelope, and not until 60 m did

Previous analyses by Miriti et al. (1998) showed that
the total nearest neighbour distance was 386.0, which
exceeded the expectation for a random distribution,
using Donnelly’s (1978) method, by over 15 times the
standard deviation, indicating highly significant aggre-
gation. They also used a hierarchical blocked quadrat
variance method (Dale 1999), based on Morisita’s
(1959) index (the test for which is equivalent to Greig-
Smith’s (1952) test of the index of dispersion I), using

Fig. 15. Overlaid contour and
classed post maps of SADIE
clustering indices for counts of
Ambrosia dumosa, in 5×5 m
quadrats. Red shading and
darker, larger filled red circles
indicate strong patchiness with
index values �1.5; blue
shading and darker, larger
filled blue circles indicate
strong gaps with index values
� −1.5. Medium-sized filled
circles: units with clustering
that exceeds expectation (�1
or � −1). Open circles:
clustering below expectation
(�1 or � −1).
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Fig. 16. Frequency distribution of Ambrosia dumosa logarith-
mically-transformed plant canopy volume per plant.

ensures that there is considerable autocorrelation in the
plot of L� (t) vs t. Hence, it would not only be unwise to
infer that true regularity existed at the scale of 60 m,
but also to infer that the distance at which the spatial
process became random was 24 m, or indeed to attempt
a precise estimate of this distance. In summary, the
most important information conveyed by this analysis
relates to the existence of the strongest pattern at the
smallest distances.

The following analyses were done for the counts of
individuals in 5×5 m contiguous subareas. Directional
variograms were calculated (Fig. 14). The large nugget
variance and shallow slope up to the sill supported the
conclusion above, that the major structure in the data
occurred at distances smaller than were resolvable by
the subarea size. The variogram range also confirmed
the indication, from L� (t), that there was some larger-
scale structure up to distances of ca 25 m. This distance
was confirmed by the results from both Moran’s I and
Geary’s c. Additionally, the variograms showed some
mild anisotropy in the 135° direction for distances �40
m, providing further support for the existence of the
bands referred to above, although no directionality was
detected by an angular correlation analysis.

The SADIE analysis confirmed the presence of large-
scale patches of varying size up to ca 400 m2 (mean
patch cluster index=1.29; p=0.025), and gaps (mean
gap cluster index= −1.35; p=0.048). The most nota-
ble feature was a long gap ca 10 m wide stretching from
left to right across almost the entire width of the
hectare block (Fig. 15), and supporting further the
existence of the bands of low density.

it increase again relative to the randomizations. This is
not thought to reflect an important facet of the data. It
was probably a manifestation of the change in intensity
along the diagonal that runs from lower-left to upper-
right of the area, which appears to cycle 2.5 times as it
traverses the two large relatively empty bands referred
to above. The wavelength of this cycle is ca (40�2)
m=57 m which coincides well with the value of t for
which L� (t) is a minimum. The abundance of individuals

Fig. 17. (a) The 100×100
grid of NDVI derived from
AVHRR data from 7 to 20
August, 1992, collected over
the Cascade Mountains.
Darker shades represent
smaller values. (b) The
100×100 grid of elevation
data from the same location.
(c) Frequency distribution of
NDVI and (d) elevation in
feet.
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Fig. 18. (a) Moran’s I correlogram for NDVI; all lags are significant (p�0.05). (b) Angular correlation for NDVI. (c)
Directional variogram for NDVI and (d) elevation.

There was a very strong linear relationship between
logarithmically-transformed plant canopy volume and
counts, and when mapped these two derived (z) vari-
ables appeared very similar. However, a frequency dis-
tribution of transformed volume per plant (Fig. 16)
showed a clearly bimodal distribution with relatively
many plants in the smallest size class and a second
more symmetric mode for much larger plants. Such
bimodality is characteristic of many long-lived plants in
which seeds readily germinate, but mortality of smaller
individuals is high until a certain size threshold is
reached, after which survival probabilities increase until
senescence. Also, mapping revealed considerable spatial
pattern in the values of volume per plant within the
5×5 m contiguous subareas. Broadly, volumes per
plant were greater in the left-hand half of the study
arena (x�50, mean transformed volume per plant=
12.93 with SEM 0.121; x�50, mean transformed vol-
ume per plant=12.42 with SEM 0.099). Clustering was
significant (SADIE indices both p=0.0002), with two
regions of relatively low volume per plant (top centre
and lower-right side, each 200–300 m2) and one 200 m2

patch of greater than average volume, at the lower-left
of the area. The reason for spatial structure in these
growth differences between plants is unknown.

Case study 3: remotely-sensed AVHRR data in
the Cascade Mountains

Since 1982, the Advanced Very High-Resolution Ra-
diometer (AVHRR) satellite imager (Eidenshink 1992)
has collected image data from daily coverage of the
Earth, using a nominal 1-km sampling rate. We down-
loaded archived and processed area-referenced
AVHRR data, collected from 7 to 20 August 1992,
from the EROS Data Center web site �http://
edcwww.cr.usgs.gov/landdaac/1KM/comp10d.html�.
We extracted a 100×100 matrix of ca 1 km square cells
located on the east side of the Northern Cascade
Mountains, Washington (Fig. 17a). The normalized
difference vegetation index (NDVI) (James and Kalluri
1993, Townshend et al. 1994), the difference of near-in-
frared (channel 2) and visible (channel 1) reflectance
divided by their sum, were also provided. Positive
values of NDVI indicate green vegetation; negative
values indicate non-vegetated surface features such as
water, barren rock, ice, snow or clouds. To minimize
data storage requirements, NDVI values were rescaled
as integers in the interval [0,200]. A US Geological
Survey digital elevation model from the same region
(e.g. Thelin and Pike 1991) was registered with the
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NDVI data and resampled to the same 1×1 km grid
cells (Fig. 17b). Frequency distributions for NDVI (Fig.
17c) and elevation (measured in feet, Fig. 17d) exhib-
ited only slight skewness and no transformation was
needed before analysis. Specific questions posed for
these data were: what are the spatial patterns of NDVI
and elevation and how similar are they? Are these two
variables correlated?

Declining values in Moran’s I correlogram (Fig. 18a)
and increasing values in the directional variogram (Fig.
18c) indicated strong, positive autocorrelation in vege-
tation across the map, while their monotonic nature
across the full range of distances indicated the presence
of a large-scale trend or gradient of vegetation. This
trend was present in every direction except for a 45°
angle. The angular correlation diagram (Fig. 18b) con-
firmed this directionality, achieving maximal values be-
tween 90° and 135°. This revealed anisotropy may be
seen clearly in the raw data (Fig. 17a); highest NDVI
values are to the north-west and lowest values to the
south-east. This pattern probably reflects the distribu-
tion of forested areas along the eastern slope of the
North Cascade Mountains. Forests are more abundant
at higher elevations and high desert vegetation is domi-
nant at the lower elevations to the south-west. The
correlogram, angular correlation diagram and an-
isotropy directions for elevation were so similar to
those for NDVI that they are not shown. The direc-
tional variogram for elevation (Fig. 18d) confirms the
anisotropy shown by the trend and direction of the
strongest gradient evident in the map (Fig. 17b).

Rossi et al. (1992) pointed out that a large-scale
trend, such as the anisotropy found here for NDVI and
elevation, could obscure patterns of spatial dependence
at smaller lag distances. Here, it is unclear from the
directional variograms (Fig. 18c, d) whether anisotropy

exists in autocorrelation at short lag distances or is
limited to the large-scale trend.

In order to investigate further the scale of autocorre-
lation and anisotropy, we removed the large-scale trend
in both data sets by fitting a model of the form:
zx,y=a+b1x+b2y. Estimates of the parameters for
NDVI were: a= −172.4, b1= −0.000173, b2=
0.000107; and for elevation: a= −55119, b1=
−0.0303, b2=0.0258. The directional variograms for
the detrended NDVI residuals from this model (Fig.
19a) differed from those discussed above; they reached
a maximum (sill), and indicated less anisotropy, al-
though the range appeared slightly longer in the 135°
direction than for other angles. The directional vari-
ograms of the detrended elevation data (Fig. 19b)
showed precisely the same differences, but additionally,
for the 90° angle the elevation variogram exhibited a
slight ‘‘hole effect’’, first increasing then decreasing with
increasing lag distances. This pattern is characteristic of
some sort of oscillatory undulation or repetitive fluctu-
ation (Isaaks and Srivastava 1989) here probably
caused by the regular alternation of valleys and ridges.
The same pattern also appears, although less distinctly,
in the 90° variogram (Fig. 19a) of the NDVI data.

Overall, there was a striking similarity between the
NDVI and elevation variograms. Both had nugget ef-
fects near zero for the raw data, indicating the existence
of a very continuous, smooth surface. The ranges of
both detrended sets of data were between 10 000 and
20 000 m, presumably reflecting the average distance
between mountain peaks. However, the similarity of the
variograms cannot be used alone to infer their associa-
tion, since many different spatial arrangements may
share the same variogram (Liebhold and Sharov 1998).
We calculated a Pearson correlation coefficient of
0.4916 between raw NDVI and elevation; a ‘‘naı̈ve’’ test

Fig. 19. Directional variograms of detrended data. (a) NDVI, (b) elevation.

ECOGRAPHY 25:5 (2002) 595



Fig. 20. Vector representation
of land use and land cover
(LULC) data.

for association without adjusting for spatial autocor-
relation would indicate significance (p�0.0001).
However, the existence of autocorrelation in both
variables violates the assumption of independence
among samples and the test of correlation requires
adjustment (Clifford et al. 1989, Bocard et al. 1992,
Dutilleul 1993). This is because the presence of spatial
autocorrelation indicates that the amount of informa-
tion in a set of data is less, and may be considerably
less, than that in a sample of the same size where
there is none. This loss of information is therefore
allowed for by an adjustment that leaves the magni-
tude of the correlation unchanged, but alters the de-
grees of freedom of the test. We used the variograms
in Fig. 18 to adjust the degrees of freedom from 9998
to 14.52 using the method of Clifford et al. (1989);
the revised, valid test was not significant (p=0.0679).
Hence, the observed large magnitude of the correla-
tion was almost completely due to common and
large-scale spatial structure; after adjustment for this
effect, correlation was only marginally significant.

Case study 4: land cover in Monterey County,
California

Land use land cover (LULC) data are area-referenced
data developed by the US Geological Survey (USGS)
for every portion of the conterminous USA at either
a 1:100 000 or 1:250 000 scale. They are available
from the USGS web site in either vector or raster
format (Anon. 1986). Data are derived by manual
interpretation of aerial photographs, incorporating in-
formation from earlier land-use maps and field sur-
veys. Land-use cover is classified according to the
scheme developed by Anderson et al. (1976).

The data used in this case study consisted of the
south-eastern corner of the 1:100 000 Monterey quad-
rangle located in the central coast region of Califor-
nia. The study arena spanned 30.4 km from east to

west and 27.2 km from south to north. Only land
areas classified into three land cover classes were in-
cluded: herbaceous rangeland (code 31); shrub and
brush rangeland (code 32); and mixed rangeland
(code 33). All analyses were performed on data pro-
jected to the Universal Transverse Mercator projec-
tion (zone=10) (Fig. 20). The analysis described here
is limited to those descriptive statistics (McGarigal
and Marks 1995) that measure patch size, edge den-
sity and shape from polygonal data (Table 2). Mixed
rangeland was the dominant land cover type and also
had the greatest mean patch size. Both fragmentary
indices, patch size CV and edge density, were also
largest for mixed rangeland. Also, both the mean
shape index and the area-weighted shape index were
greatest for the mixed rangeland cover type, indicat-
ing a greater complexity of polygon shape.

Omnidirectional indicator variograms (Isaaks and
Srivastava 1989) were calculated for each set of bi-
nary data in raster format (200 m pixels) representing
the presence-absence of the three land covers. Rela-
tive variograms were calculated for normalized data
values from each cover type, allowing direct compari-
son of their spatial structure despite their different
means and variances. Variogram range was largest for
herbaceous rangeland and smallest for the shrub and
brush rangeland (Fig. 21a). The range reflects both
patch size and within-patch (gap) size (Woodcock et
al. 1988). This explains in part why shrub rangeland
had the smallest mean patch size (Table 2) and also
the shortest range. Woodcock et al. (1988) also re-
ported how increases in the object size variance re-
sulted in a more rounded shape of the variogram,
confirmed here by that for shrub rangeland (Fig. 21a)
which also had the lowest patch-size CV (Table 2).
However, note that the herbaceous rangeland had the
longest range, even though its patch size statistics
were both smaller than that for mixed rangeland,
probably because of the larger total area of the latter.
This again illustrated how the range of an indicator
variogram reflects the size of gaps as well as patches.
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Directional variograms for shrub rangeland (Fig.
21b) demonstrated anisotropy; the range was consider-
ably longer in the north and northwest directions. This
difference appeared to reflect both an elongation of
patches in a consistent north-westerly direction, as well
as the arrangement of patches along a band running in
that same direction (Fig. 20). This anisotropy probably
reflects ridge topography that may be associated with
vegetation. The hole effect (depression at ca 2300 m) in
the north-east directional variogram (Fig. 21b) reflected
the alternating presence and absence encountered when
traversing the study arena in a direction perpendicular
to the angle of patch elongation (Fig. 20).

Discussion

We have attempted to offer, for a limited number of
sets of data, some flavour of the kinds of outputs,
inferences and interpretations possible from spatial
analysis. Readers must realize that we have not at-
tempted an exhaustive account. Many methods are
capable of extension to provide further features, to
meet specific needs. For example, almost all of the local
quadrat variance methods detect the average size of
patches and gaps in a phased pattern along a transect,
but new local variance (Galiano 1982) detects the size
of the smallest phase of the pattern, whether it be
patches or gaps. This, when combined with other local
quadrat variance methods, allows separate estimation
of patch and gap size.

We give only four recommendations to ecologists
with spatial data in search of methods with which to
analyze them. First, make extensive use of simple visu-
alization techniques such as graphs and mapping (Tufte
1997, Carr 1999) as a first step to understanding spatial
characteristics in the data. Second, select statistical
methods that are available and appropriate for the data
type. Third, select a method that can answer pertinent
questions and provide relevant spatial information.
Reference to Table 1 may help the selection process.
Given the suitability of several methods, it would be
invidious and naı̈ve to attempt to go beyond this to
recommend which single specific technique to use.
Readers must form their own conclusions, informed by
the theoretical properties of the methods and their
performance in the above case studies. Most methods
are distinct and no single one can identify all of the
spatial characteristics in data. Therefore, our fourth
recommendation is to employ several different tech-
niques. We do not believe that any methods we have
examined intrinsically provide redundant information,
fail to detect real patterns, or identify patterns that are
not real.

In certain circumstances, it may be sensible to widen
the possible range of techniques that may be brought to
bear on a problem, by converting between data types.
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Fig. 21. (a) Omnidirectional relative variograms for LULC data, with semivariance plotted against lagged distance; (b)
directional variograms for the shrub and brush rangeland data in (a).

Examples are the formation of counts by conversion of
data from point locations to contiguous subareas, the
taking of samples, and transformation from polygonal
to contiguous subareas (i.e. vector to raster format).
For the first two the degree of loss of information must
be considered (Dungan et al. 2002). For the third, note
that both geographic entities and fields can be repre-
sented either in vector (represented by origin, length
and direction), raster (regular tessellation with square
elements) or TIN (irregular tessellation with triangular
elements) form. The choice of form depends largely on
the application of the data (Burrough and McDonnell
1998). The vector form assures better accuracy and
efficient data storage, while raster data can be pro-
cessed faster and are adapted easily to deal with
changes in modes of analysis. Conversion of polygonal
data from vector to raster form was illustrated in case
study 4. Indeed, the raster format is exploited increas-
ingly as the primary data type in landscape ecology,
because of the growing utilization of remotely-sensed
data in that discipline (and see case study 3, above).
The conversion facilitated the application of a wider
range of statistical methods, such as indicator vari-
ograms, frequently used in disciplines other than land-
scape ecology. A further example of the generic use of
statistical techniques is the texture and ‘‘lacunarity’’
measures employed in remote sensing and landscape
ecology (Plotnick et al. 1993), that calculate variance
across gliding windows. Dale et al. (2002) note their
similarity to the local quadrat variance methods used in
plant ecology.
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